Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures.
نویسندگان
چکیده
The rationale of correlative light and electron microscopy (CLEM) is to collect data on different information levels--ideally from an identical area on the same sample--with the aim of combining datasets at different levels of resolution to achieve a more holistic view of the hierarchical structural organization of cells and tissues. Modern three-dimensional (3D) imaging techniques in light and electron microscopy opened up new possibilities to expand morphological studies into the third dimension at the nanometer scale and over various volume dimensions. Here, we present two alternative approaches to correlate 3D light microscopy (LM) data with scanning electron microscopy (SEM) volume data. An adapted sample preparation method based on high-pressure freezing for structure preservation, followed by freeze-substitution for multimodal en-bloc imaging or serial-section imaging is described. The advantages and potential applications are exemplarily shown on various biological samples, such as cells, individual organisms, human tissue, as well as plant tissue. The two CLEM approaches presented here are per se not mutually exclusive, but have their distinct advantages. Confocal laser scanning microscopy (CLSM) and focused ion beam-SEM (FIB-SEM) is most suitable for targeted 3D correlation of small volumes, whereas serial-section LM and SEM imaging has its strength in large-area or -volume screening and correlation. The second method can be combined with immunocytochemical methods. Both methods, however, have the potential to extract statistically relevant data of structural details for systems biology.
منابع مشابه
ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution corr...
متن کاملCorrelative Light and Electron Microscopy – on the Way from 2D Towards 3D
The next step will be to address correlative 3D applications. To achieve this, it is necessary to exactly define volumes of interest (VOI) in the data of the first microscope. Further, the precise relocation of the identical VOI in the second microscope is essential as well as the registration of the 3D object in all spatial directions. However, the correlation of 3-dimensional data from differ...
متن کاملPreservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.
In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal...
متن کاملHigh-Resolution Correlative Microscopy: Bridging the Gap between Single Molecule Localization Microscopy and Atomic Force Microscopy.
Nanoscale characterization of living samples has become essential for modern biology. Atomic force microscopy (AFM) creates topological images of fragile biological structures from biomolecules to living cells in aqueous environments. However, correlating nanoscale structure to biological function of specific proteins can be challenging. To this end we have built and characterized a correlated ...
متن کاملTOOLS AND TECHNIQUES SPECIAL ISSUE: 3D CELL BIOLOGY 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy
The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in cell biology
دوره 111 شماره
صفحات -
تاریخ انتشار 2012